We thank Drs A. Onkelinx and Professor F. C. De Schryver (KU Leuven) for providing the crystals and the Research Foundation of Leuven for financial support. LVM is a Research Associate of the National Fund for Scientific Research (Belgium).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, complete geometry and least-squares-planes data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55602 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: L11026]

References

- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
- Lee, G.-H., Wang, Y., Tanaka, K. & Toda, F. (1988). Chem. Lett. pp. 781-784.
- Siemens (1989). P3/PC Data Collection, version 4.2. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA. Siemens (1990). SHELXTL/PC, version 4.1. Siemens Analytical
- X-ray Instruments, Inc., Madison, Wisconsin, USA.
- Toda, F., Tanaka, K., Nassimbeni, L. & Niven, M. (1988). Chem. Lett. pp. 1371-1374.
- Toda, F., Tanaka, K., Yagi, M., Stein, Z. & Goldberg, I. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 1215–1216.

Acta Cryst. (1993). C49, 595-598

Structures of Two (1:1) Adducts of $[\alpha, \alpha$ -Bis(3,3,3-trifluoropropynyl)]benzyl Benzoate and Furan

MICHAEL G. BARLOW, BRIAN BEAGLEY, ROBIN G. PRITCHARD, SABIHA TAJAMMAL, ANTHONY E. TIPPING AND ANDREW P. WRIGHT

Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England

(Received 23 April 1992; accepted 29 September 1992)

Abstract

[(Z)-5-(Benzoyloxybenzylidene)]-1,4-bis(trifluoromethyl)-8-oxatricyclo[4.3.0.0^{2,9}]nona-3,6-diene (4) and 11,12-benzo-10-benzoyloxy-2,8-bis(trifluoromethyl)-5-oxapentacyclo[7.3.0.0^{1,6}.0^{2,4}.0^{3,7}]dodec-8-ene (5) are two of four main (1:1) adducts of the title reactants. The crystallographical characterization of (4) and (5) assists in establishing the mechanistic pathways of the reaction. The ring strain in isomer (4) is particularly marked at double-bonded C6 where the three angles sum to 344.4 (7)°; in the three-membered ring,

0108-2701/93/030595-04\$06.00

C2—C9 [1.542 (7) Å] is significantly longer than C1-C2 and C1-C9 [1.479 (6) and 1.470 (6) Å respectively] and the angles C2-C1-C9. C1-C2-C9 and C1-C9-C2 [63.1 (3), 58.2 (3) and 58.8 (3)° respectively] are all significantly different from 60° . The strain in isomer (5), which has two molecules of the same chirality in the asymmetric unit, does not distort the three-membered ring but gives rise to a long bond [C1-C6 = 1.59(2)] and 1.62 (2) Å in molecules 1 and 2, respectively], angles around C1 considerably distorted from tetrahedral. and a large angle at double-bonded C9 [C8-C9- $C10 = 142 (1), 138 (1)^{\circ}$].

Comment

When $[\alpha, \alpha-bis(3,3,3-trifluoropropynyl)]$ benzyl benzoate (1) undergoes Diels-Alder reaction with furan, four major (1:1) adducts $C_{24}H_{14}F_6O_3$ (4)-(7) can be isolated (besides minor components) from a solid product; crystallographic identification of (4) and (5) confirms the participation of the unstable intermediate adduct (3) formed by intramolecular ($\pi^2 s + \pi^2 s$ $+\pi^2 s$) cycloaddition from the initial alkyne Diels-Alder adduct (2) (Barlow, Tajammal & Tipping, 1989). Adducts (6) and (7) were identified by ¹H, ¹³C and ¹⁹F NMR; details of the preparation of all the materials have been given by Tajammal (1991). After chromatographic separation of (4)-(7) from the initial solid, (4) was recrystallized slowly from a mixture of petroleum ether (b.p. 313-333 K) and dichloromethane (3:5:1 v/v), and (5) from pentane.

A crystal structure determination of a saturated 7-oxa lactone derivative of the tricyclic ring system in (4) has been reported (Dulcere & Crandall, 1990). No other crystal structure with the ring system of (5) appears to have been reported.

© 1993 International Union of Crystallography

Fig. 1. View of (4) showing atom labelling; F7, F8 and F9, the lesser components of the disordered CF_3 at C10, are omitted for clarity.

Fig. 2. View of one of the two independent molecules of (5) showing the atom labelling; H atoms are omitted for clarity. The other molecule, which has identical labelling suffixed with A, is not significantly different.

Experimental

Compound (4)

Crystal data

 $C_{24}H_{14}F_{6}O_{3}$ $M_{r} = 464.36$ Monoclinic $P2_{1}/c$ a = 9.526 (2) Å b = 20.167 (2) Å c = 11.067 (2) Å $\beta = 90.00 (2)^{\circ}$ $V = 2126 (1) \text{ Å}^{3}$ Z = 4 $D_{x} = 1.451 (1) \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\lambda = 0.71069$ Å

Cell parameters from 25 reflections $\theta = 7.99-12.15^{\circ}$ $\mu = 0.123 \text{ mm}^{-1}$ T = 296 KBlocks $0.3 \times 0.3 \times 0.2 \text{ mm}$ Colourless

Data collection

Enraf-Nonius CAD-4 $R_{\rm int} = 0.021$ $\theta_{\rm max} = 23.0^{\circ}$ diffractometer $h = -10 \rightarrow 5$ $\omega/2\theta$ scans $k = 0 \rightarrow 21$ Absorption correction: $l = -12 \rightarrow 11$ none 3 standard reflections 3144 measured reflections 1741 independent reflections frequency: 120 min intensity variation: none 1246 observed reflections $[I > 2.00\sigma(I)]$

Refinement

Refinement on F $(\Delta/\sigma)_{max} = 0.013$ Final R = 0.046 $\Delta\rho_{max} = 0.10$ e Å⁻³wR = 0.026 $\Delta\rho_{min} = -0.10$ e Å⁻³S = 3.52Atomic scattering factors1246 reflectionsfrom International Tables306 parametersfor X-ray Crystallography $w = 4F_o^2/[\sigma^2(F_o^2)]$ (1974, Vol. IV)

Program(s) used to solve structure: *MULTAN80* (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980), *SHELXS86* (Sheldrick, 1985) and *MITHRIL* (Gilmore, 1984). Program(s) used to refine structure: *SHELX76* (Sheldrick, 1976) and *TEXSAN* (Molecular Structure Corporation, 1985). Molecular graphics: *PLUTO* (Motherwell & Clegg, 1978).

Compound (5)

Final R = 0.085

2454 reflections

593 parameters

 $w = \frac{4F_o^2}{[\sigma^2(F_o^2)]}$

wR = 0.059

S = 5.89

Crystal data C24H14F6O3 $M_r = 464.36$ Monoclinic Cc a = 13.138 (2) Å b = 13.897 (2) Å c = 21.912 (2) Å $\beta = 91.77 (2)^{\circ}$ V = 3999 (1) Å³ Colourless Z = 8 $D_x = 1.543 (1) \text{ Mg m}^{-3}$ Data collection Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 3690 measured reflections 3516 independent reflections 2454 observed reflections $[I > 2.00\sigma(I)]$ Refinement Refinement on F

Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 25 reflections $\theta = 9.94-15.67^{\circ}$ $\mu = 0.131$ mm⁻¹ T = 296 K Blocks $0.4 \times 0.4 \times 0.3$ mm

 $R_{int} = 0.017$ $\theta_{max} = 25.0^{\circ}$ $h = 0 \rightarrow 15$ $k = 0 \rightarrow 16$ $l = -24 \rightarrow 25$ 3 standard reflections frequency: 120 min intensity variation: none

 $(\Delta/\sigma)_{max} = 0.076$ $\Delta\rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\hat{A}^2)	C27 F1 <i>A</i>
isotropic inerniai parameters (A)	F2A

$B_{\rm eq} = (8\pi^2/3)\sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$				F3A F4A	
(4)	x	у	z	Beq	F5A F6A
F1	0.8536 (3)	0.66210(15)	0.3752 (3)	9.5 (2)	O5A
F2	0.7715 (3)	0.68539 (12)	0.2030 (3)	9.3 (2)	019A 0214
F3	0.6393 (3)	0.69123 (13)	0.3570 (4)	11.2 (2)	ClA
F4	0.5062 (4)	0.4036 (4)	0.0647 (5)	13.0 (4)	C2A
F5 F6	0.08//(8)	0.3598 (2)	0.1348 (3)	12.4 (4)	C3A
08	0.5550(3)	0.4489(2)	0.0434(3) 0.4442(3)	9.0 (3) 5 Q (2)	C4A
019	0.9837 (3)	0.58870 (12)	0.1934 (2)	4.4(1)	C6A
O21	1.1688 (3)	0.59249 (14)	0.3202 (3)	6.3 (2)	C84
Cl	0.6027 (4)	0.4516 (2)	0.2390 (4)	4.4 (2)	C9A
C2	0.4998 (5)	0.5054 (2)	0.2594 (4)	5.1 (2)	C10A
C3	0.5620 (5)	0.5709 (2)	0.2894 (4)	5.2 (2)	C11A
C5	0.8023 (4)	0.5845(2) 0.5294(2)	0.2912(4) 0.2843(4)	4.8 (2)	C12A
Č6	0.7244 (4)	0.4683 (2)	0.3184 (4)	4.1 (2)	CI3A CI4A
C7	0.6851 (5)	0.4562 (2)	0.4303 (4)	5.2 (3)	C14A C15A
C9	0.4926 (5)	0.4393 (2)	0.3293 (5)	5.7 (3)	C16A
C10	0.6223 (6)	0.4159 (3)	0.1218 (5)	6.0 (3)	C17A
CII	0.7418(6)	0.6544 (3)	0.3069 (6)	7.5 (4)	C18A
C12 C13	1.0255(4)	0.3299(2) 0.4717(2)	0.2459 (4)	4.1(2) 4.2(2)	C20A
C14	1.1032 (4)	0.4648 (2)	0.1287(4)	4.8 (2)	C22A
C15	1.1823 (5)	0.4085 (3)	0.1096 (5)	6.3 (3)	C24A
C16	1.1853 (5)	0.3579 (2)	0.1917 (6)	7.5 (3)	C25A
C17	1.1100 (5)	0.3655 (2)	0.2968 (5)	7.7 (3)	C26A
C18 C20	1.0319 (5)	0.4223 (2)	0.3183 (4)	6.0 (3)	C27A
C20 C22	1.1001 (5)	0.0147(2) 0.6725(2)	0.2349 (4)	4.2 (2)	
C23	1.0775 (4)	0.6942 (2)	0.0639 (4)	5.2(2)	
C24	1.1252 (5)	0.7485 (2)	-0.0018 (4)	6.3 (3)	
C25	1.2439 (6)	0.7807 (2)	0.0332 (4)	6.6 (3)	Comp
C26	1.3192 (5)	0.7599 (2)	0.1305 (5)	6.9 (3)	
C27 F7	1.2714(5) 0.754(2)	0.7054(2) 0.4058(14)	0.1973 (4)	5.5 (3)	08-0
F8	0.754(2) 0.559(2)	0.3578 (10)	0.093(2) 0.135(2)	4.1 (6)	019-0
F9	0.560 (3)	0.4485 (9)	0.035 (2)	4.1 (6)	019—0
					021-0
(5)					C1 - C
F1 F2	0.143	0.7404 (8)	0.763	6.5 (6)	
г2 F3	0.0000(10) 0.0038(12)	0.6702(7)	0.7283(7) 0.7586(7)	0.7 (5)	C1-C
F4	0.3214 (9)	0.5895 (6)	0.9584 (7)	6.8 (6)	C2—C
F5	0.2059 (10)	0.4922 (8)	0.9859 (7)	8.7 (7)	C70
F6	0.2538 (9)	0.4869 (7)	0.8951 (7)	8.3 (7)	C12-C
05	-0.1076 (9)	0.6869 (7)	0.9071 (7)	5.5 (6)	C2—C
019	0.3195 (8)	0.7701 (6)	0.8691 (7)	3.7 (4)	C2—C
O21	0.4259(10)	0.8679(7)	0.9230(7)	4.7 (5)	C2—C
C2	0.0166 (11)	0.7007 (10)	0.8316 (9)	3.8 (7)	C6C
C3	0.0062 (11)	0.5963 (9)	0.8505 (9)	4.0 (7)	
C4	-0.0858 (12)	0.6601 (10)	0.8468 (9)	4.6 (8)	C1-C
C6	-0.0059 (11)	0.6856 (10)	0.9347 (9)	4.2 (7)	C1C
C/	0.0437 (12)	0.5897 (9)	0.9184 (9)	3.7 (7)	C3C
C9	0.1529(11) 0.1654(10)	0.0174 (9)	0.9230 (8)	3.1(7) 3.2(7)	C2—C
C10	0.2432 (11)	0.7869 (9)	0.9136 (8)	3.5 (7)	C3_C
C11	0.1782 (11)	0.8773 (9)	0.9000 (8)	3.3 (7)	C5-C
C12	0.0760 (12)	0.8588 (9)	0.8919 (8)	3.8 (7)	C4—C:
C13	0.0049 (12)	0.9263 (11)	0.8848 (9)	4.6 (8)	Comp
C14 C15	0.0391 (15)	1.0221 (12)	0.8867 (10)	6(l) 6(l)	Compo
C16	0.2182(13)	0.9755(11)	0.8923 (10)	51(9)	05-0
C17	0.044 (2)	0.7313 (13)	0.7719 (10)	6(1)	CI-C
C18	0.2330 (14)	0.5480 (10)	0.9428 (10)	4.5 (8)	C1—C
C20	0.4125 (11)	0.8163 (10)	0.8798 (10)	4.2 (8)	C1—C
C22	0.4877 (11)	0.7846 (9)	0.8343 (9)	4.0 (7)	C1-C
C23	0.5604 (12)	0.0193(10)	0.0424 (9)	4.0 (ð) 6 (1)	C2-C
C25	0.6390 (12)	0.7418 (13)	0.7542 (10)	5(1)	C2_C
C26	0.540 (2)	0.7066 (14)	0.7432 (11)	7(1)	C3—C4

0.4676 (13)	0.7321 (11)	0.7810(10)	5(1)
0.6816 (8)	0.4780 (8)	0.7124 (5)	7.2 (6)
0.8122 (11)	0.4141 (8)	0.7540 (7)	8.2 (7)
0.8122 (10)	0.5598 (7)	0.7262 (7)	7.7 (6)
0.5250 (9)	0.3436 (6)	0.5145 (7)	5.9 (5)
0.6371 (10)	0.2472 (7)	0.4834 (8)	9.2 (7)
0.5894 (10)	0.2356 (7)	0.5732 (7)	7.9 (7)
0.9535 (9)	0.4261 (7)	0.5819 (7)	5.7 (6)
0.5290 (9)	0.5255 (6)	0.6044 (7)	3.8 (5)
0.4225 (10)	0.6184 (7)	0.5437 (8)	5.3 (6)
0.7854 (11)	0.4937 (9)	0.5902 (8)	3.3 (7)
0.8169 (11)	0.4426 (10)	0.6503 (9)	3.7 (7)
0.8268 (11)	0.3348 (10)	0.6320 (8)	4.2 (8)
0.9200 (13)	0.3962 (10)	0.6394 (10)	5.1 (9)
0.8593 (12)	0.4299 (10)	0.5487 (8)	4.3 (8)
0.8013 (11)	0.3348 (9)	0.5649 (9)	4.7 (8)
0.6912 (11)	0.3678 (9)	0.5504 (9)	3.6 (7)
0.6849 (11)	0.4584 (9)	0.5662 (8)	2.8 (6)
0.6088 (11)	0.5406 (8)	0.5604 (8)	3.1 (6)
0.6736 (11)	0.6270 (8)	0.5753 (8)	3.5 (7)
0.7725 (11)	0.5974 (9)	0.5909 (8)	3.9 (7)
0.8496 (12)	0.6695 (10)	0.6006 (9)	4.9 (8)
0.8202 (13)	0.7700 (12)	0.6001 (10)	6(1)
0.7232 (15)	0.7920 (9)	0.5888 (9)	5 (1)
0.6408 (12)	0.7224 (11)	0.5743 (8)	3.8 (7)
0.7849 (13)	0.4732 (13)	0.7103 (9)	4.5 (9)
0.6092 (14)	0.2993 (11)	0.5317 (11)	5 (1)
0.4382 (11)	0.5722 (10)	0.5878 (9)	4.0 (8)
0.3618 (11)	0.5461 (8)	0.6368 (9)	4.0(7)
0.2605 (11)	0.5739 (10)	0.6199 (10)	4.7 (8)
0.1881 (13)	0.5525 (12)	0.6657 (10)	6 (1)
0.2147 (15)	0.5063 (13)	0.7151 (10)	7 (1)
0.3117 (12)	0.4802 (15)	0.7296 (10)	7 (1)
0.3870 (12)	0.5004 (11)	0.6895 (10)	5.0 (8)

Table 2. Selected geometric parameters (Å, °)

Compound (4)			
08—C7	1.349 (6)	C2—C9	1.542 (7)
)8—C9	1.414 (6)	C3C4	1.318 (6)
019—C12	1.402 (5)	C4—C5	1,498 (6)
019—C20	1.359 (5)	C4-C11	1.482 (7)
021—C20	1,203 (5)	C5—C6	1,487 (6)
C1-C2	1.479 (6)	C5-C12	1.328 (6)
21—C6	1,493 (6)	C6-C7	1.317 (7)
21—C9	1.470 (6)	C12-C13	1.467 (6)
C1-C10	1.496 (7)	C20-C22	1.482 (6)
C2—C3	1.484 (6)		
7-08-C9	103.8 (3)	C4C5C12	130.0 (4)
C12-019-C20	118.3 (3)	C6-C5-C12	124.1 (4)
2—C1—C6	105.1 (3)	C1-C6-C5	115.2 (4)
2—C1—C9	63.1 (3)	C1-C6-C7	106.9 (4)
2—C1—C10	124.7 (4)	C5-C6-C7	122.3 (4)
26—C1—C9	101.1 (4)	O8—C7—C6	116.0 (4)
26—C1—C10	121.4 (4)	08-C9-C1	109.3 (4)
29—C1—C10	126.7 (4)	O8-C9-C2	122.4 (4)
C1—C2—C3	115.0 (4)	C1C9C2	58.8 (3)
C1C2C9	58.2 (3)	O19—C12—C5	117.2 (3)
23—C2—C9	132.4 (4)	O19-C12-C13	115.8 (3)
2—C3—C4	125.4 (4)	C5-C12-C13	126.0 (4)
C3—C4—C5	119.8 (4)	O19-C20-O21	123.2 (4)
23—C4—C11	118.7 (4)	O19—C20—C22	111.7 (3)
25—C4—C11	121.4 (4)	O21—C20—C22	125.2 (4)
C4—C5—C6	105.6 (3)		
Compound (5)			
05—C4	1.41 (2)	O5A—C4A	1.41 (2)
05—C6	1.45(1)	O5A—C6A	1.42 (2)
C1—C2	1.56 (2)	C1A—C2A	1.54 (2)
C1—C6	1.59 (2)	C1AC6A	1.62 (2)
C1—C9	1.55 (2)	C1A-C9A	1.49 (2)
C1-C12	1.52 (2)	C1A—C12A	1.45 (2)
2—C3	1.52 (2)	C2A-C3A	1.56 (2)
2—C4	1.51 (2)	C2A—C4A	1.53 (2)
2—C17	1.43 (2)	C2A-C17A	1.46 (2)
23—C4	1.50 (2)	C3A—C4A	1.50 (2)

C3C7	1.55 (2)	C3A—C7A	1.50(2)
C6-C7	1.53 (2)	C6A-C7A	1.57(2)
C7C8	1.49 (2)	C7A-C8A	1.54 (2)
C8-C9	1.31 (2)	C8A-C9A	1.31 (2)
C8-C18	1.48 (2)	C8A - C18A	149(2)
C9-C10	1 50 (2)	C9A - C10A	1.52 (2)
	1.54 (2)		1.50(2)
C11-C12	1.37 (2)	C11A—C12A	1.39 (2)
C4	100 (1)	C4A—O5A—C6A	100 (1)
C2-C1-C6	93 (1)	C2AC1AC6A	94 (1)
C2C1C9	111 (1)	C2AC1AC9A	111 (1)
C2C1C12	120 (1)	C2AC1AC12A	118 (1)
C6-C1-C9	97 (1)	C6AC1AC9A	99 (1)
C6-C1-C12	129 (1)	C6A-C1A-C12A	129 (1)
C9-C1-C12	104 (1)	C9A—C1A—C12A	103 (1)
C1-C2-C3	103 (1)	C1A-C2A-C3A	104(1)
C1C2C4	107 (1)	C1A—C2A—C4A	106(1)
C1-C2-C17	122(1)	C1A-C2A-C17A	124(1)
C3-C2-C4	59.4 (9)	C3A-C2A-C4A	58.1 (9)
C3-C2-C17	124 (1)	C3A-C2A-C17A	123 (1)
C4-C2-C17	124 (1)	C4A—C2A—C17A	123 (1)
C2-C3-C4	59.9 (8)	C2A-C3A-C4A	59.9 (9)
C2-C3-C7	107 (1)	C2A-C3A-C7A	104 (1)
C4-C3-C7	109(1)	C4A - C3A - C7A	105 (1)
05	108 (1)	05A - C4A - C2A	109 (1)
05-C4-C3	107 (1)	05A - C4A - C3A	110(1)
C2-C4-C3	60.6 (9)	C2A - C4A - C3A	62.0 (9)
05-C6-C1	105 (1)	05A - C6A - C1A	105 (1)
05-C6-C7	107 (1)	Q5A—C6A—C7A	106(1)
C1-C6-C7	96 (1)	C1A - C6A - C7A	92 (1)
C3-C7-C6	93 (1)	C3A - C7A - C6A	97(1)
C3-C7-C8	110(1)	C3A - C7A - C8A	112(1)
C6-C7-C8	100(1)	C6A - C7A - C8A	99 (1)
C7-C8-C9	111 (1)	C7A-C8A-C9A	107 (1)
C7-C8-C18	122 (1)	C7A - C8A - C18A	122 (1)
C9-C8-C18	127 (1)	C9A - C8A - C18A	130(1)
C1C9C8	108 (1)	C1A - C9A - C8A	110(1)
C1C9C10	110(1)	C1A - C9A - C10A	111 (1)
C8-C9-C10	142(1)	C8A - C9A - C10A	138 (1)
019-010-09	110(1)	0194 - C104 - C94	109(1)
019-010-011	113(1)	0194 - C104 - C114	113(1)
C9-C10-C11	102 (1)	C9A - C10A - C11A	102 4 (9)
C10-C11-C12	114(1)	C10A - C11A - C12A	110(1)
C10-C11-C16	124 (1)	C10A - C11A - C16A	126(1)
C12-C11-C16	122 (1)	C12A - C11A - C16A	125 (1)
C1-C12-C11	109 (1)	C1A - C12A - C11A	114(1)
C1-C12-C13	127 (1)	C1A— $C12A$ — $C13A$	128 (1)
C11-C12-C13	124 (1)	C11A-C12A-C13A	119(1)
	• •		

The data for compounds (4) and (5) were corrected for Lorentz and polarization effects. Most H atoms were located in $\Delta \rho$ maps, but were held fixed during refinements at calculated positions which were updated after each sequence of refinement cycles (no significant improvement in the agreement with experiment was achieved by refining hydrogen parameters). In compound (4), the F atoms at C10 are disordered. F4, F5 and F6 form the major component of the CF₃ group with a common fluorine site occupancy factor, s, which refined to 0.89(1); these atoms were otherwise refined individually and anisotropically. F7, F8 and F9 were refined as a triangular group with a group isotropic vibrational parameter; their common site occupancies were constrained to 1 - s.

The final R of 0.085 for compound (5) (wR = 0.059) occurs because of small electron density peaks in positions attributable to a fragmented and highly disordered H-bonded water network in the cavities and between the independent molecules; the water could not be removed totally by drying.

The CAD-4 diffractometer was funded by the SERC which is also thanked for funding the Chemical Databank

0108-2701/93/030598-03\$06.00

Service at Daresbury used for crystallographic literature searches.

Lists of structure factors, anisotropic thermal parameters and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55655 (46 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL1014]

References

- Barlow, M. G., Tajammal, S. & Tipping, A. E. (1989). J. Chem. Soc. Chem. Commun. pp. 1637–1639.
- Dulcere, J.-P. & Crandall, J. K. (1990). J. Chem. Soc. Chem. Commun. pp. 561-563.
- Gilmore, G. J. (1984). J. Appl. Cryst. 17, 42-46.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Motherwell, W. D. S. & Clegg, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- Tajammal, S. (1991). PhD thesis. UMIST, England.

Acta Cryst. (1993). C49, 598-600

Structure of Pentabenzylcyclopentadiene

HERBERT SCHUMANN,* FRANK H. GÖRLITZ AND LOTHAR ESSER

Institut für Anorganische und Analytische Chemie, Straße des 17. Juni 135, Technische Universität Berlin, W-1000 Berlin 12, Germany

(Received 19 March 1992; accepted 23 September 1992)

Abstract

The crystal structure analysis of pentabenzylcyclopentadiene $\{1,1',1'',1''',1''''-[(1,3-cyclopentadiene-$ 1,2,3,4,5-pentayl)pentakis(methylene)]pentakis(ben $zene)} shows groups of two and three benzyl substit$ uents on opposite sides of the planar cyclopentadienering. The compound is monomeric.

Comment

Substituting the cyclopentadienyl ligand in organoelement and organometal compounds with the bulky pentabenzylcyclopentadienyl system $[C_5(CH_2Ph)_5]^-$

© 1993 International Union of Crystallography